The "electromagnetic fields" subtheme"
After healthy adult volunteers had been exposed to a mobile phone (900 MHz, 0.5 W/kg) for 20 minutes, we measured the brain blood flow rate in the middle cerebral arteries (using transcranial Doppler ultrasonography), the microcirculation flow rate in the skin of the face (using laser Doppler flowmetry) and the brain’s electrical activity (using EEG). Our results showed a significant increase in the skin’s microcirculation flow rate during exposure, and no change in the blood flow rate in the middle cerebral arteries. In contrast, the brain’s EEG activity in the alpha band (8-12 Hz) fell during and after exposure.
A similar study of chronic exposure to athermic EM waves (such as those emitted by a mobile relay station) in the presence or absence of mild thermal stress revealed a fragmentation of rapid eye movement sleep, an exacerbation of the peripheral vasoconstrictor tone, and increased food intake. These results enabled us to conclude that chronic exposure to EMFs triggers certain energy-saving mechanisms. This observation prompted us to suspect an increase in the body’s thermoneutral set temperature - triggering cold response mechanisms that would not be activated by an individual not exposed to an EMF.
Taken as a whole, these data evidence an interaction between the effects of EMFs and the thermoregulatory mechanisms involved. They reinforced our hypothesis, in which co-exposure (thermal stress and EMFs) may have an important role and may explain the disparities in the literature between studies that find effects and those that do not. Our results have been cited by (i) the French environment health agency as an example of the increase in the level of proof for the effects of EMFs on sleep (document 2011-SA-0150) and (ii) the WHO in its Monograph on Electromagnetic Fields, as a demonstration of vasomotor effects at intensities below the current regulatory thresholds.